HydroCore 유역모델 소개

2024

유역모델 개발 연혁

CAMEL

완전분포형 유역모델 소유역 규모 적용 2010

STREAM

복합형 유역모델 중대유역 규모 적용 2015

SNIPE

토양 질소수지 모델 대유역/전국 규모 적용 2017

REDPOLL

개념적 유역모델 대유역/전국 규모 적용 2021

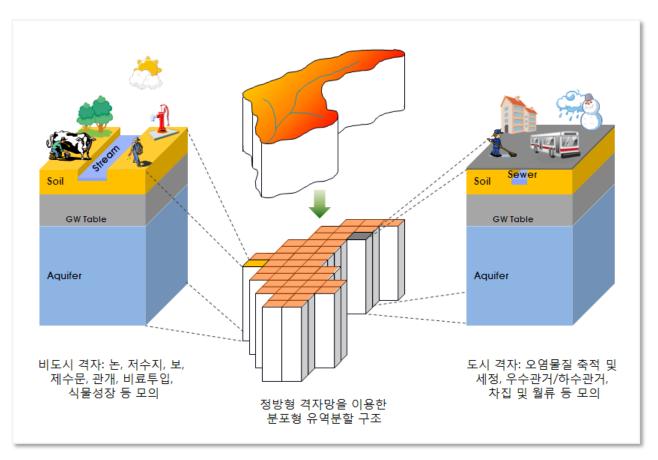
DEWMOST

앙상블 유역모델과 결합한 DNN 모델 2024

WHQ

WRF-Hydro 모델과 연계한 유역수질 모델

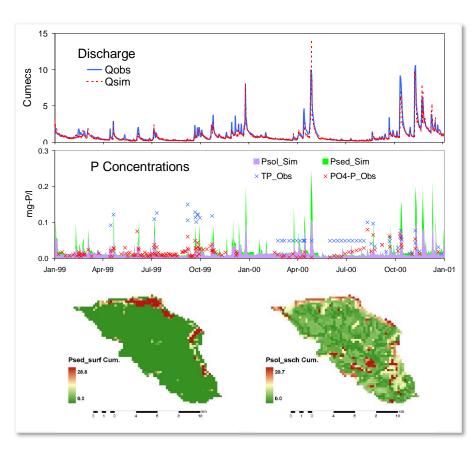
유역모델요약표


	CAMEL	STREAM	SNIPE	REDPOLL	DEWMOST	WHQ	
Watershed Representation	Square grids	Square grids	Square grids	Square grids	Square grids	Square grids	
Temporal Scale	1 min – 1 hour	1 min – 1 hour	Daily	Daily	1 hour – 1 day	1 sec – 1 hour	
Hydrology	Physically-based	Hybrid	Hybrid	Conceptual (CN method)	Hybrid	Physically-based	
Channel Routing	Cascade routing	Muskingum-Cunge	N/A	Muskingum-Cunge	Muskingum-Cunge	Muskingum-Cunge	
Sediment Transport	Physically-based	Physically-based	Physically-based	EMC	Physically-based	Physically-based	
С	0	0	0	EMC	0	0	
N	0	0	0	EMC	0	0	
Р	0	0	X	EMC	0	0	
Soil/Water Temperature	O (energy budget)	O (regression)	O (regression)	O (regression)	O (regression)	O (energy budget)	
CSOs/SSOs	0	0	X	X	0	X (개발예정)	

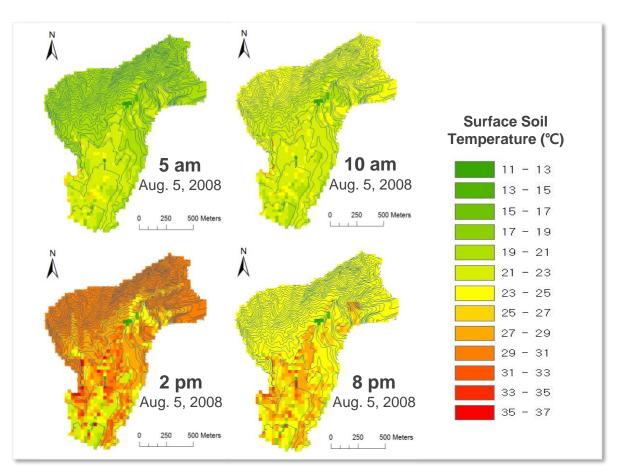
CAMEL (Chemicals, Agricultural Management and Erosion Losses)

▶ 주요 특징

- ✓ 완전 분포형 유역모델 지향
- ✓ 물리식에 기초한 개별 프로세스의 명시적 모의
- ✓ 유역을 정방형 격자망으로 분할
- ✓ 격자를 복수의 토양층과 대수층(상부/하부) 으로 구분
- ✓ 에너지 수지에 기반한 토양온도 모의
- ✓ 입도별, 이동형태(부유사, 소류사)별 유사이동 모의
- ✓ 토양/지하수/수체 내 유기물 변환 및 이동 모의
- ✓ 지표수 및 지하수 통합 모의
- ✓ 2차원 지하수 유동 모의
- ✓ 합류식/분류식 하수관거 유출 모의
- ✓ 소유역 수문/수질 상세분석 및 평가에 적합

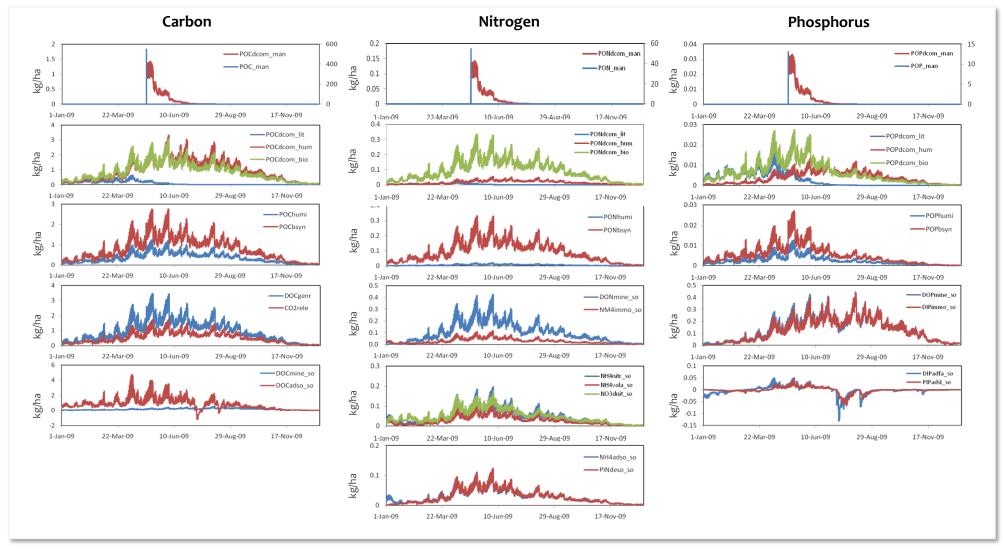


CAMEL의 유역 분할 구조



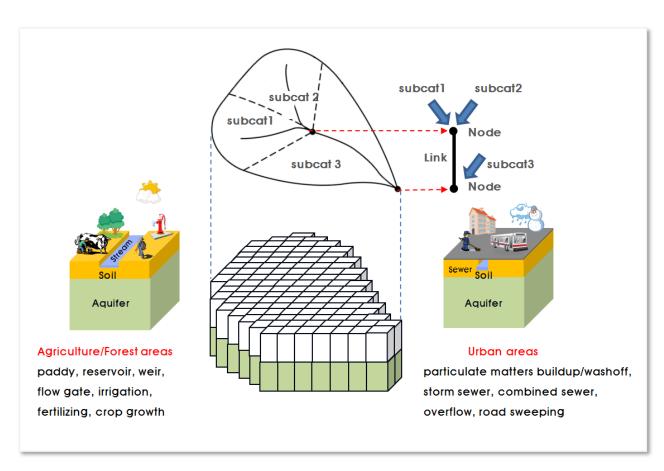
CAMEL (Chemicals, Agricultural Management and Erosion Losses)

▶ 적용사례

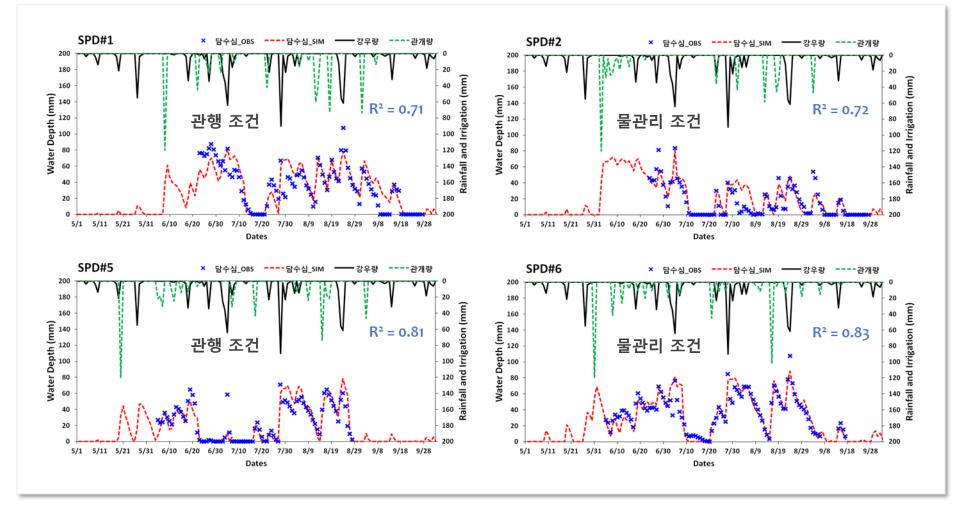

CAMEL 모의결과: 소유역 내 인의 주오염원 지역 분석 (Tarland Catchment, Scotland, 1999 - 2000)

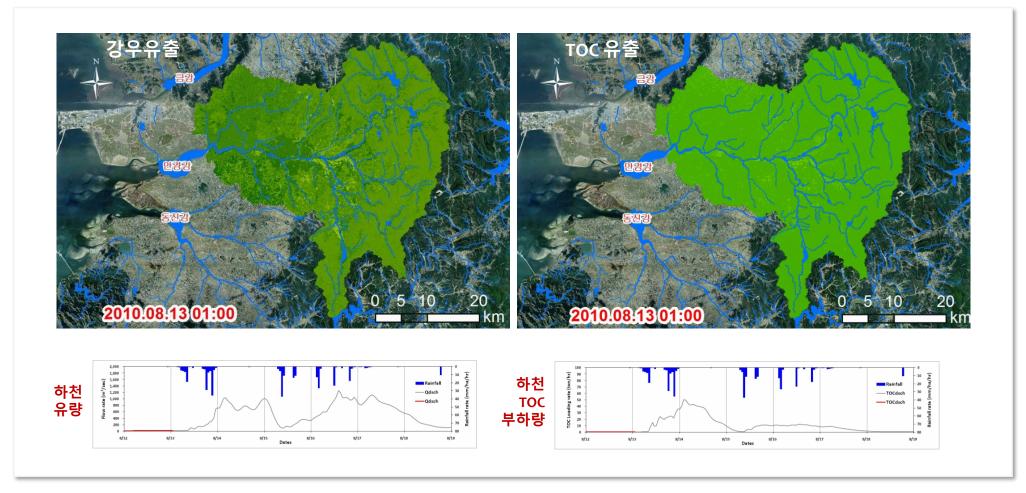
CAMEL 모의결과: 표층 토양온도의 시공간 분포 (경기도 여주군 오계리, 2008)

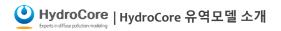
CAMEL (Chemicals, Agricultural Management and Erosion Losses)

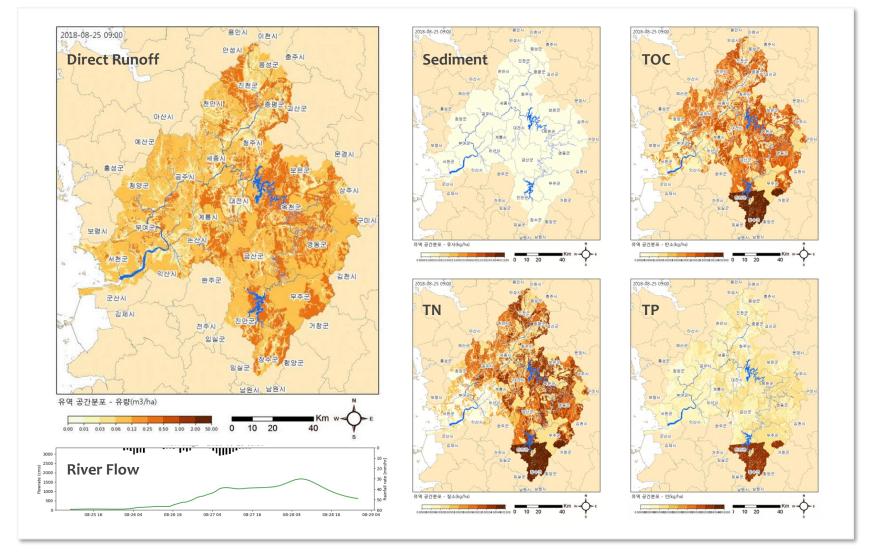

【CAMEL 모의결과: 토양 내 유기물(탄소/질소/인)의 연간 변환과정 (경기도 여주군 오계리, 2009)

▶ 주요 특징


- ✓ CAMEL 모델을 중대규모 유역에 적용할 수 있도록모의 구조 간략화 및 기능 추가 개발
- ✓ 수문단위격자(Hydrologic Unit Cells) 개념 적용
 - 기상, 경사도, 토성, 토지피복, 관망종류, 상류면적에 따라 HUC 구분
- ✓ 소유역 내 물질이동 과정 간략화
 - 소유역 내 각 격자의 유출량은 하천으로 직접 이동
- ✓ 보, 저수지, 제수문, 관개수로 등의 수리구조물로 부터 관개 모의
- ✓ 완효성비료 및 지표면 멀칭 효과 모의
- ✓ 도로청소에 의한 오염부하 저감효과 모의
- ✓ 중대유역 수문/수질 분석 및 평가에 적합


▮ STREAM의 유역분할 구조

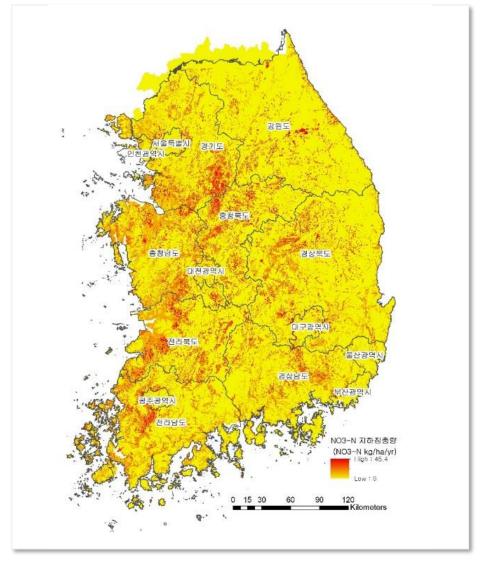

▶ 적용사례



▮ STREAM 모의결과: 유역 내 강우유출 및 TOC 유출의 시공간 분포 (만경강 유역, 2010)

▋STREAM 모의결과: 유역 내 강우유출 및 오염부하유출의 시공간 분포 (금강 유역, 2018)

SNIPE (<u>Subsurface MI</u>trogen <u>P</u>ollution <u>E</u>valuation)

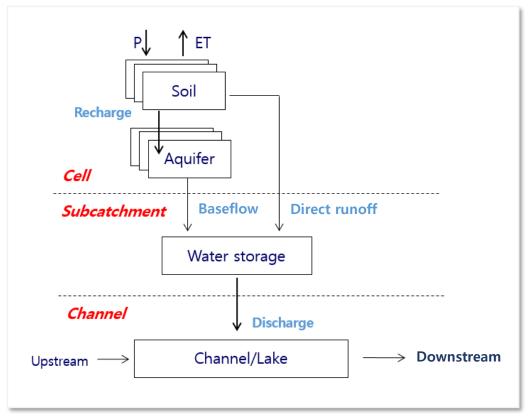

▶ 주요 특징

도요새

- ✓ STREAM 모델의 모의 구조를 간략화 한 토양 질소수지 모델
- ✓ 토양으로부터의 지하침출 질소부하량 모의
- ✓ 모의 시간간격: 1일
- ✓ 하천을 통한 물질 이동은 모의하지 않음
- ✓ 국가규모에서 효과적 지하수 관리정책 수립을 위해 운용 가능

▶ 적용사례

- ✓ 전국 토지이용별 단위면적당 질산성질소 침출량 산정
 - 밭: 24.4 kg N/ha/yr
 - 논: 7.0 kg N/ha/yr
 - 산림/초지/나지 등: o.o7 kg N/ha/yr

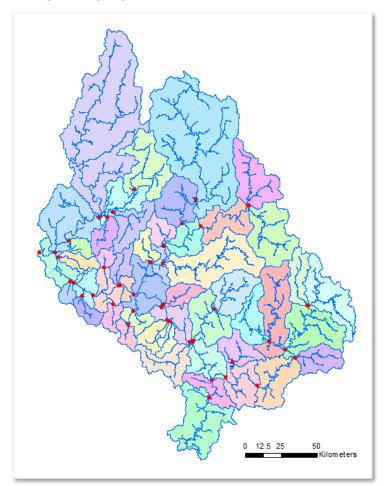

SNIPE 모의결과: 연간 NO3-N 지하 침출량 공간분포 (2005 – 2014)

REDPOLL (Regional Estimation of Diffuse POL lution Loads)

▶ 주요 특징

홍방울새

- ✓ 비점오염부하의 시공간적 특성을 고려한 유달부하량 산정을 위해 개발된 개념적 유역모델
- ✓ 유역을 정방형 격자망과 소유역으로 분할
 - 격자 구성: 1개의 토양층과 1개의 지하대수층
 - 소유역 연결: 노드-링크 네트워크 구성
- ✓ 수문과정 모의
 - 잠재증발산량 및 증산량: 개념식 적용
 - 직접유출: cN 기법 또는 Green-Ampt 기법
 - 기저유출: 지하수 감쇠 지수함수 적용
 - 하천추적: Muskingum 기법 적용
- ✓ 수질오염 배출과정 모의
 - 배출부하량: 직접유출량에 토지피복별 유량가중평균농도 적용
 - 유달부하량: 격자별로 유하거리에 따른 감쇠함수 적용



REDPOLL 모델의 유역 수문과정 모의 개념도

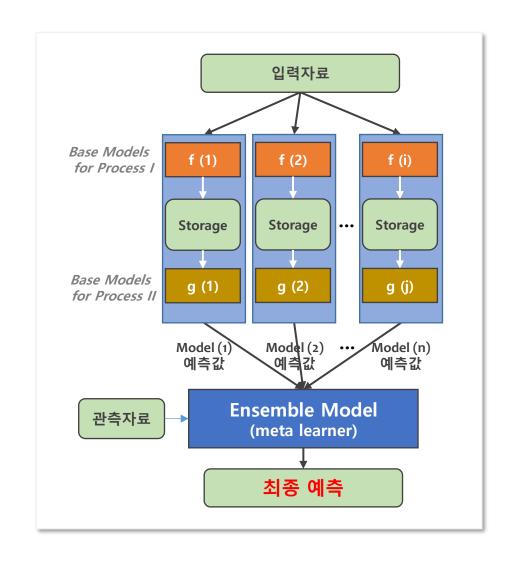
REDPOLL (Regional Estimation of Diffuse POL lution Loads)

▶ 적용사례

홍방울새

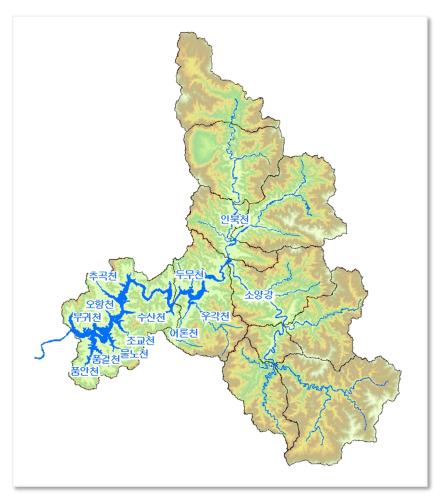
REDPOLL 모델 구축: 한강유역의 소유역과 모델 보검정 지점

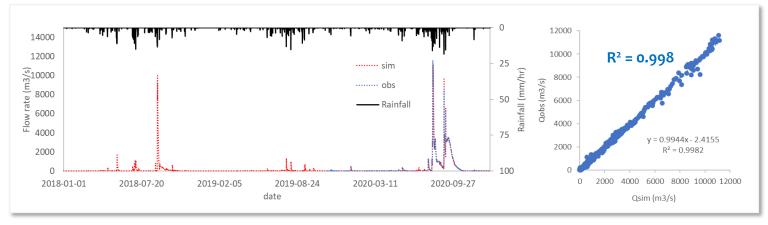
REDPOLL 모의 결과: 한강유역에서 황해로 유출되는 연간 오염부하량 (2016)

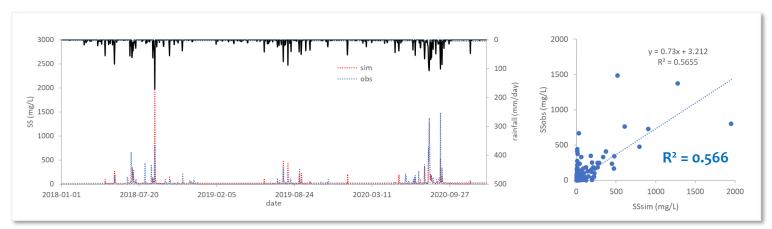

Courses	SS		BOD		TN		TP	
Sources	ton/year	%	ton/year	%	ton/year	%	ton/year	%
Point source	6860.7	0.2	10,481.7	13.2	27,120.8	24.8	792.8	7.3
Diffuse source	2,741,908.4	99.8	68,733.4	86.8	82,251.4	75.2	10,100.5	92.7
Direct runoff	(2,695,833.4)	(98.1)	(56,238.5)	(71.0)	(51,761.2)	(47.3)	(9,711.3)	(89.1)
Baseflow	(46,075.0)	(1.7)	(12,494.9)	(15.8)	(30,490.3)	(27.9)	(389.2)	(3.6)
Total discharge	2,748,769.1	100.0	79,215.1	100.0	109,372.2	100.0	10,893.3	100.0
Reduction by attenuation	1,912,222.7	69.6	23,071.8	29.1	26,828.4	24.5	7,105.0	65.2
Loads to the Yellow Sea	836,546.4	30.4	56,143.3	70.9	82,543.8	75.5	3,788.3	34.8

DEWMOST (Deep-learning and Ensemble Watershed Modeling Of Stream Turbidity)

➢ 주요 특징

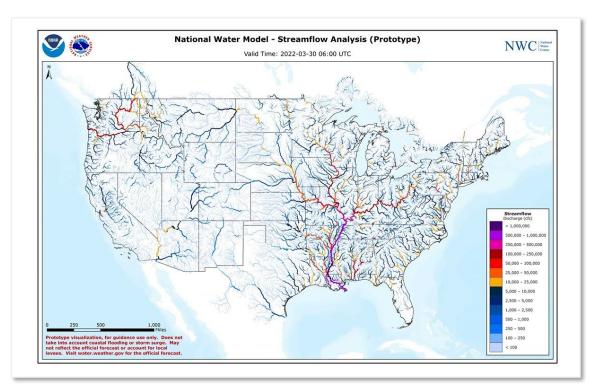

- ✓ 총 72개의 앙상블 유역모델 구성
 - 기본모델: STREAM
 - 앙상블 수문 모델 18개
 - 증발산량: 3개
 - 토양수분함량 및 수리전도도: 3개
 - 토양침투 및 지표면 강우유출: 2개
 - 앙상블 유사이동 모델 4개
 - 지표면 유사이동능력: 2개
 - 하천 유사이동능력: 2개
- ✓ 스태킹 (Stacking) 앙상블 모델 개발
 - 각 수문-유사이동 모델별 가중치 설정
 - 수문-유사이동 모의결과와 관측자료를 이용한 심층학습 (DNN)



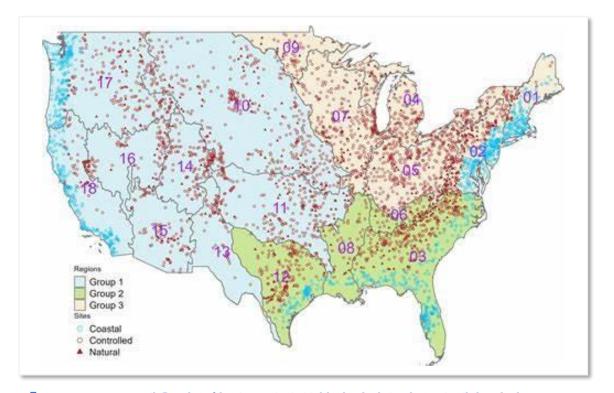

DEWMOST (Deep-learning and Ensemble Watershed Modeling Of Stream Turbidity)

▶ 적용사례

DEWMOST 모의결과: 인북천 유역 말단의 1시간 유량 (2018 – 2020)

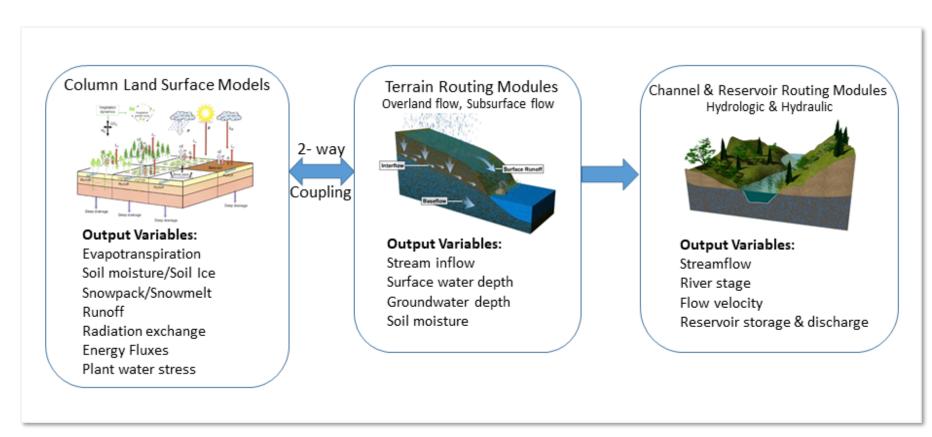

DEWMOST 적용 유역: 소양호 상류의 인북천 유역

DEWMOST 모의결과: 인북천 유역 말단의 1일 평균 부유사 농도 (2018 − 2020)



➤ WRF-Hydro (WH) 모델

- ✓ 미국 NCAR(National Center for Atmospheric Research)에서 개발된 오픈소스 수문모델링 시스템
- ✓ 격자기반의 통합모델 (기상+수문+추적모델)로서 소유역부터 대륙 규모까지 적용 가능

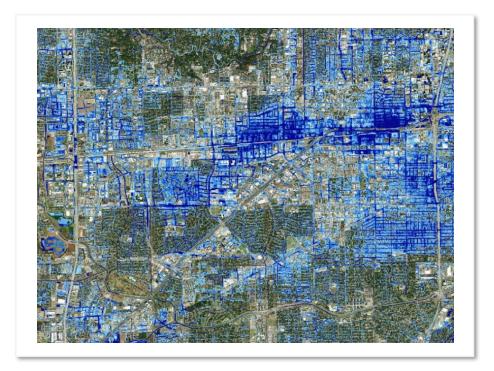


▋ WRF-Hydro 모델을 이용한 미국 전역 하천의 평년초과 유량 예측 지점 (NOAA)

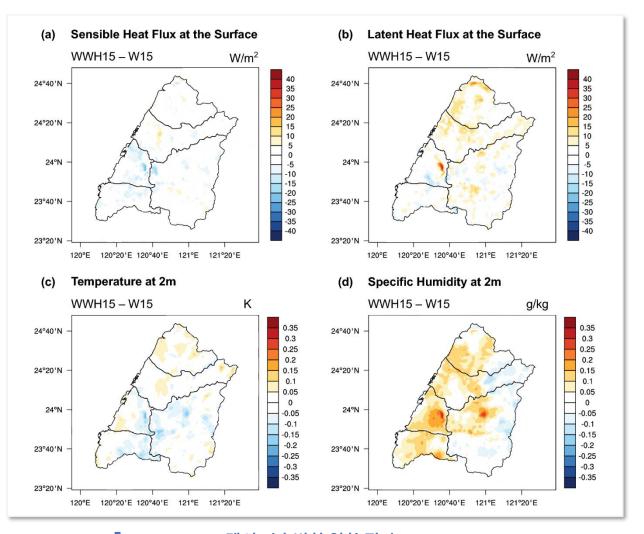
WHQ (WRF-Hydro Quality)

➤ WRF-Hydro 모델의 구성

- ✓ 지표모델
 - Noah
 - Noah-MP
- ✓ 추적모델
 - 지표유출
 - 중간유출
 - 기저유출
- ✓ 하천 및 저수지모델
 - 하천 및 저수지 추적

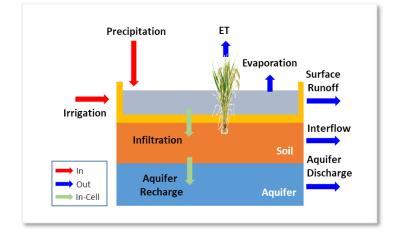


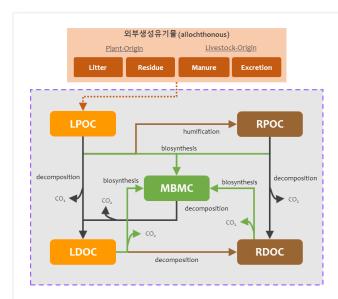
▋ WRF-Hydro 모델의 구성 개념도

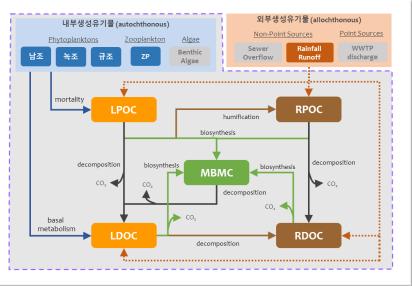


➤ WRF-Hydro 모델의 적용 분야

- ✓ 홍수 예측: 정확하고 안정적인 하천 유량 예측
- ✓ 수자원 관리: 수자원의 계절 변동 예측 및 가뭄 평가
- ✓ 기후영향 평가: 기후변화에 의한 수문영향 평가

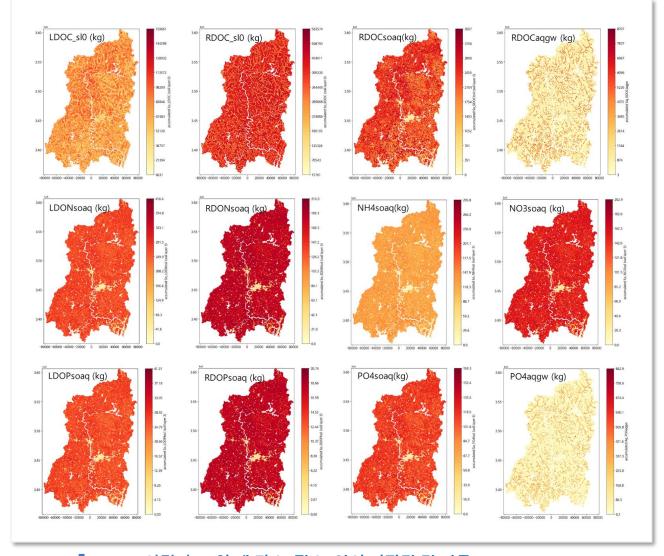

■ WRF-Hydro 모델의 홍수 범람 모의 (NCAR)




> WRF-Hydro-Quality (WHQ) 모델

- ✓ WH 모델 내에 한국형 수문모듈 추가 개발
 - 논모듈
 - 저수지 수문 모듈
- ✓ WH 모델과 연계 운용되는 수질모델 개발
 - 토양침식 및 유사 이동 모델
 - 탄소 변환 및 거동 모델
 - 질소 변환 및 거동 모델
 - 인 변환 및 거동 모델
 - 점오염원 모듈
 - 물배분 모듈

₩HQ 모델: 논에서의 수문과정 모식도



➤ WHQ모델적용사례

- ✓ 낙동강 유역 모델 구축
 - 격자 크기: 500 m X 500 m
 - 환경부 중분류 토지피복도 (2022)
 - 농업과학원 정밀토양도
 - KRF 기반 하천수계망 구축
 - 164개 기상관측지점 관측자료 분석
- ✔ WHQ 모델 보정 및 검정 (진행 중)

경청해주셔서 감사합니다.

(꾸)하이드로코어

서울시 금천구 가산디지털1로 219 벽산디지털밸리6차 1104호 02-2627-3575 hlcho@hydrocore.co.kr www.hydrocore.co.kr